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PROBLEMS AND TRENDS IN MATHEMATICAL MODELING

UDC 519; 533.6V. M. Kovenya

Main problems and trends in mathematical modeling — a new line of research into various processes
and phenomena — are formulated. The status and future prospects are analyzed using as an ex-
ample the mechanics of continuous media. Emphasis is on two stages of modeling — the selection
of physicomathematical models of the mechanics of continuous media and numerical algorithms of
solution.

Introduction. Mathematical modeling as a new method for investigating and obtaining new knowledge
emerged in the 1970s based on wide application of mathematical methods to the solution of theoretical and practical
problems in natural science. Its emergence and evolution was due to the design of powerful computers capable of
extremely rapid arithmetic and logical calculations. The increasing complication of problems in science, technology,
engineering, and national economy has required the development and justification of mathematical models reflecting
the main features of the phenomena studied and efficient numerical algorithms of solution. In turn, efficient
implementation of those algorithms not only has led to the emergence of new computers but has also given impetus
to the design of new programming languages, operating systems, and software support systems and the development
of new approaches to programming and informational technologies. This has made it possible to convert from the
use of a computer as a high-speed calculator to a modeling system that includes the entire process, starting from the
construction of mathematical models and numerical algorithms and programming to the development of program
systems and packages for solution of special classes of problems and analysis, output, and storage of results, which
constitutes a new scientific discipline — mathematical modeling [1–11].

The emergence of this new line of research has given rise to new problems, whose solution determines further
progress in this direction. Mathematical models and algorithms, program systems and software packages, comput-
ers and support systems for problem solution are elements of modeling. Their role can be properly assessed only
considering the entire modeling chain, which will further be referred to as the technological chain (see [11]). By
the technological chain of modeling we understand a set of elements implemented in a definite order and consti-
tuting a complete cycle. Clearly, for different research areas, those elements can be different, and, therefore, the
basis of the technological chain must contain elements that are common for all fields of modeling. In accordance
with modern views, the modeling process can be represented as the following sequence: the phenomenon under
study → mathematical models → numerical algorithms → programming → computer → calculations and analysis
→ processing and storage of results, which complements the well-known triad of mathematical modeling “model–
algorithm–program” [2, 4, 11]. Obviously, all elements of the technological chain are interrelated, this relation is
nonlinear, and a change of one of the elements can modify not only the subsequent but also the preceding elements.
Prior to modeling, a researcher performs an explicit or implicit analysis of the entire modeling chain proceeding
from the present-day views on the examined phenomenon or process, the available computer resources, numerical
algorithms, etc. Of course, for certain phenomena and classes of problems, some chain elements can evidently be
omitted. As an example, we give N. N. Yanenko’s idea of a difference scheme (numerical algorithm) as a math-
ematical model for describing a physical phenomenon. The construction of more complete mathematical models
adequate for describing more complicated processes and the development of more accurate and efficient numerical
algorithms have required more powerful computers. This can be attained not only through the improvement of
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the element basis but also by the development of new computer architectures using the principles of multiprocessor
systems and parallel computations. These architectures in turn, impose certain requirements on numerical algo-
rithms, most of which were developed in the era of uniprocessor computers, in which computations were carried out
successively. New computer architectures require the design of new numerical algorithms and revision of existing
numerical methods aimed at adapting them to those architectures.

At present, we can state that along with physical and full-scale experiments, mathematical modeling is one of
the basic methods for investigating and obtaining new knowledge in various fields of natural science. Its significance
can be expected to further increase in the nearest years but it will never replace physical or full-scale experiments,
because experience will necessarily remain the primary basis of any study. It should be expected that various
methods of investigation complementing each other will become closer. Extensive use of mathematical modeling in
various fields of natural sciences and human activity is due to many factors, mainly the following:

— the increasing sophistication of the class of research problems, whose solution requires expensive new
experimental setups or model objects (in some cases, numerical modeling of these problems involves much lower
expenses);

— high costs and power consumption required for the operation of experimental setups and objects;
— a demand for solving environmental, social, and other problems;
— impossibility of carrying out physical (chemical, economic etc.) or full-scale experiments in some fields of

investigation (where mathematical modeling is the only way out).
To the indicated factors we should add potential reduction in the time of investigation and obtaining re-

sults and the possibility of multiple repetition of studies, refinement of results, storage, etc. The development of
mathematical modeling results in automatic control systems, which can drastically increase labor productivity and
eliminate the negative effect of the so-called “human element” on decision making. Thus, mathematical modeling
has become a major method of investigation and obtaining new knowledge. At the same time, results of mathe-
matical modeling have been extensively used in industry and other human activities (e.g., in developing automatic
design systems, expert systems, etc., [12]). The present paper considers some trends in mathematical modeling.
Since the scope of this paper does not allow us to cover all spheres of its application, we focus on problems of the
mechanics of continuous media. In this area, mathematical modeling has been widely used because other approaches
are often inapplicable and because this class of problems is of great significance for industrial development (see,
e.g., [1–12]). As was noted above, the efficiency of mathematical modeling can be adequately assessed when the
entire technological chain is considered. Therefore, we will concentrate on the status and development of individual
elements of this chain and their interrelation. Focus is on the selection of models and numerical algorithms.

1. Physicomathematical Models. For problems of the mechanics of continuous media in full formula-
tions, physicomathematical models can be described by the integral laws of conservation

∂

∂t

∫
V

W0 dV +
∮
S

W ds =
∫
V

F dV, (1.1)

,
which express the relationship between time variations of some quantities in a closed volume V (fluxes and their
change with passage through the boundary S, and the interaction of the fluxes with external sources or sinks. The
integral laws of conservation (e.g., of mass, momentum, and energy for models of continuous media) describe motion
in the most general form and are valid both for both continuous and discontinuous solutions. In addition to the
integral form, it is common to use their differential representation

∂W0

∂t
+ divW = F,

which is obtained from (1.1) but valid only for continuous solutions.
The variety and multiparameter nature of the problems studied and the nonumiform scales of the processes

lead to a sequence of physicomathematical models, each of which is obtained under certain assumptions on the
nature of the examined phenomenon and describes its main regularities. Another characteristic feature of this
approach is the variety of equations describing the models used. The obtained equations can be of different types
(hyperbolic, parabolic, or equations of a variable type), which leads to different formulations of initial and boundary
problems. Moreover, in studies of the same class of problems, the type of equations can change, depending on the
type of solution. For instance, the steady equations of gas dynamics are elliptic equations for subsonic velocities
and hyperbolic equations for supersonic velocities, i.e., in individual calculation subdomains, it is necessary to solve
equations of different types, which imposes additional requirements on the applied numerical methods.
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Most processes in fluid mechanics are nonlinear and evolutionary, and, as a consequence, the same properties
are inherent in the systems of equations describing these processes. The properties of such equations have been
studied inadequately. For most problems, the existence and uniqueness theorems have not yet been proved, and,
moreover, their solutions can be nonunique and discontinuous even for smooth initial data (see [10]). Conversion to
multidimensional problems and more complex calculation domains (consideration of real geometries) makes their
formulation even more difficult. In the absence of rigorous proofs of the existence and uniqueness of solutions, the
question arises of whether the employed physicomathematical model is adequate to the phenomenon investigated.
When there is no sufficient information on the phenomenon under study, it is necessary to consider different models
taking into account the major regularities of the phenomena investigated for various ranges of the main parameters.
Therefore, the choice and formulation of physicomathematical models becomes a multiparameter problem, whose
solution requires an analysis of the entire set of models. Prior to modeling, a researcher needs to answer a number
questions. For example, what is the ultimate goal of the research and what results are expected from the solution
of the problem? How important is the problem at hand and what is its significance for the general problem? What
is the accuracy of the model and what accuracy of the solution is required? What resources need to be employed
in the solution and what mathematical and engineering resources are available to the researcher? Actually, the
researcher analyzes the entire technological chain of modeling and draws an inference about the feasibility of solving
the problem by employing the existing models, numerical algorithms, and hardware (computers) or formulates the
conditions and requirements necessary for its solution (e.g., the necessity of developing additional models, numerical
methods, new computer designs, etc.).

The development of models describing adequately the phenomenon or process under study includes their
mathematical justification and correct formulation of initial boundary-value problems. According to present-day
views, all classes of models for problems of mechanics can be divided into four groups (levels):

1) analytical approximations and linearized equations;
2) nonlinear equations ignoring dissipation processes;
3) nonlinear equations allowing for dissipation processes
4) full unsteady models described by equations taking into account real effects (such as Navier–Stokes

equations allowing for compressibility, thermal conductivity, turbulence, etc.), the equations of multicomponent
and multiphase media, magnetohydrodynamic models of various levels, etc.

Nowadays, all groups of models are used (depending on the purpose of investigation, classes of the problems
studied, their general significance, required accuracy of solution, available software and hardware, and other factors)
starting from the simplest ones (first level) and up to the most sophisticated models (third and fourth levels). Let us
consider some examples from computational aerodynamics. In the approximation of potential flow (first level), the
panel method is appropriate for solving problems of flows past aircraft of real configurations (e.g., F4F aircraft with
weapon loading) and obtaining distributions of flow parameters over the aircraft surface [13]. First calculations of
this type were carried out in the 1970s on low-power computers. This model, however, does not allow for real effects
in gas, such as compressibility, viscosity, and thermal conductivity, and does not yield the distribution of gas-dynamic
flows in the vicinity of the body. Conversion to high velocities necessitates the use of nonlinear models described
by gas-dynamic equations (second level). Their solutions can contain discontinuities of gas-dynamic parameters,
which requires the use of special calculation methods and high-capacity computers (109 FLOP) (FLOP is the
number of floating-point operations per second). The emergence of high-speed computers in the 1980s, has made
it possible to calculate flows past a supersonic airplane (e.g., F16) in the approximation of Euler equations over
time comparable to flight time. Even at present, however, the problem of unsteady flow past a body taking into
account real gas properties, such as turbulent viscosity and thermal conductivity (third and fourth levels) can be
solved only for model aircraft even using giant-powered computers. These difficulties are associated not only with
the multiparameter nature of the problem (various Mach’s and Reynolds numbers, geometry of aerodynamic bodies
etc.) but also with the insufficient justification of mathematical models and their closing relations, for example,
insufficient justification of turbulence models and their applicability. Similar difficulties also arise in hypersonic
aerodynamics, in which besides solving the above-mentioned problems, it is necessary to assess the effect of the
chemical reactions proceeding in the gas near the aerodynamic body and on its surface at high temperatures,
estimate the surface failure, and allow for strength and other characteristics.

Naturally, the solution of other problems using various approximations involves other difficulties, whose
resolution determines progress in mathematical modeling. The variety of parameters of the problems investigated
and the fact that the processes studied are nonuniformly scaled, nonlinear, and multidimensional makes it impossible
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to develop general approaches to formulating problems and obtaining solutions. We can only discuss some directions
of research and general trends, which include:

— using models of different levels depending on the purpose of investigation;
— using increasingly sophisticated models in order to allow for more real physical effects of phenomena

under study;
— analysis and systematization of models and identification of certain classes of general models applicable

to the description of a wide variety of problems;
— further mathematical justification of physicomathematical models and correct formulations of initial

boundary-value problems.
It must be noted that simplified models are usually obtained from models of higher levels under various

assumptions on the nature of the phenomenon investigated. Therefore, based on a fuller model, it is possible to
obtain a set of simplified models. Full models from which their simplified approximations can be derived will be
referred to as covering models. An example of such models is the model described by Navier–Stokes equations for
a compressible heat-conducting gas (fourth-level model). Ignoring the effects of viscosity and thermal conductivity,
we obtain a gas-dynamic model suitable for description of many physical problems. For high-viscosity flows, it is
possible to use the boundary-layer approximation obtained from the Navier–Stokes equation by retaining terms of
order O(1/

√
Re) and neglecting terms of higher-order smallness. Within the same approach, models of viscous shock

layer, models of “parabolized” Navier–Stokes equations, etc., can be obtained (see, e.g., [14]). Obviously, for other
classes of problems, chains of simplified models can be constructed on the basis of a basic covering model. This
approach allows one to reduce the number of models considered and focus on the study of basic models describing
general classes of problems.

It should be noted that the present-day level of mathematical modeling (at least, in the mechanics of
continuous media) is based on the extensive previous research in theoretical mathematics, mechanics and physics.
New achievements in mathematical modeling will be based on new theoretical results in those fields and their use
by computational mathematics. The drastic qualitative improvement in computer speed of up to 1012–1014 FLOP
attained over the past decade has made it possible to proceed to numerical modeling of fourth-level problems, for
example, modeling of real processes in metallurgy and chemistry, in aerodynamics for the optimization of the design
of real aircraft over a wide range of incident-flow parameters, modeling for hypersonic, air-breathing and rocket
engines, simulation of the transfer from laminar to a turbulent flow and back, etc.

2. Numerical Algorithms. As was already noted, the nonlinearity of most problems under study and
corresponding systems of differential equations hinders obtaining their exact solutions, except in some particular
cases. Moreover, such solutions are sometimes nonexistent, and, therefore, the main methods for obtaining them
are approximate and numerical methods. Approximate methods are based on a certain representation of a solution
using known assumptions on the nature of the solution. For example, in asymptotic methods of aerodynamics, a
solution is represented as an expansion in a small parameter (in inverse Reynolds numbers for large Re numbers or in
Mach numbers M for hypersonic velocities, etc.). Although such solutions can be readily obtained, these approaches
can be used only for comparatively simple problems in which just one flow type is predominant. The question of
the applicability and validation of these approaches remains to be solved. Asymptotic methods were extensively
used in the initial stage of modeling. The conversion to more complex models has required the development and
application of numerical algorithms for solution of multidimensional problems using various physicomathematical
models.

In the current stage of development of mathematical modeling, various numerical methods, such as the
finite-difference method (FDM), the finite-volume method (FDV), the method of finite elements, and the method
of boundary elements, and special methods, such as particle-in-cell method, the statistical Monte Carlo method,
etc. We analyze the development of the FDM and FDV, which have been extensively used to solve problems of
the mechanics of continuous media because of their universality. The fundamentals of the FDM and FDV are
presented in numerous publications (see, e.g., [15–22]). Let us recall the main notions. In a domain Ω = Ω(x) with
boundary γ, let it be required to find a solution of the boundary-value problem

Lu = f , luγ = ϕ, (2.1)

where L and l are differential, integral or algebraic operators, u = u(x) is the vector of the sought functions,
x = (t, x1, . . . , xN ) and f and ϕ are vectors of the right sides. Let us assume that problem (2.1) is well posed.
Change-over from mathematical formulation of the problem to numerical solution includes the following stages:
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— replacement of the domain Ω of the continuous argument x by its discrete analogue Ωh;
— replacement (approximation) of the functions u, f , and ϕ of the continuous argument x by discrete

functions uh, fh, and ϕh;
— approximation of the initial operators L and l by their discrete analogues Lh and lh.
The above-mentioned operations result in the system of discrete equations

Lhuh = fh, lhuh|γh = ϕh, (2.2)

which is referred to as a difference scheme. As a consequence, the question arises of the relationship (similarity)
between the solutions of the initial differential problem (2.1) and the discrete problem (2.2). Since every stage
of formulation of the discrete problem can be performed by various methods, for the solution of problem (2.1) a
family of discrete formulations (2.2) can be obtained, which, generally speaking, can have different properties. The
requirements to numerical algorithms can also differ. Let us formulate the most important of them:

— convergence of the solution of the discrete problem (2.2) to the solution of the initial problem (2.1);
— sufficient calculation accuracy;
— economic efficiency of the algorithm;
— universality of the algorithm, i.e., its adaptability to various physicomathematical models;
— adaptability of the algorithm to various computer designs and architectures.
Obviously, the above requirements, as was noted above, must be supplemented by the requirement that the

properties of the difference schemes must be adequate or close to the properties of the initial problem (see [21]), by
the conditions of scheme conservatism, algorithm homogeneity, etc. The modeling efficiency at this stage can be
accurately estimated only over the entire processing (technological) chain. It must be noted that the requirements
to numerical algorithms are somewhat contradictory, and depending on the purpose of investigation, some of them
can be omitted. For example, if it is important to obtain a high-accuracy solution, the economic efficiency or
universality of the algorithm can prove to be of less significance. Thus, satisfaction of all requirements leads to
the optimization problem of optimization. As any other optimization problem, this one can have one or several
solutions (or have no solutions at all). An obvious consequence of the aforesaid is that it its impossible to design a
universal algorithm for solving different classes of problems and that it is necessary to work out various algorithms
intended for different purposes of investigation.

Let us analyze the main requirements to numerical algorithms. In order to guarantee the convergence of a
numerical solution to the solution of the initial problem, the conditions of approximation and stability (correctness)
of the difference solution must be satisfied (as follows from the theory of difference schemes [16, 17]). The proof of
these statements is rather complicated, especially for the case of nonlinear equations, and is an important problem
of the theory of difference schemes.

Requirements to calculation accuracy for various physicomathematical problems vary depending on the aim
of modeling. Doubtlessly, calculation accuracy must agree with the accuracy of the selected physicomathematical
model. Improvement in calculation accuracy as one of the most significant characteristics can be attained by refining
the grid steps or calculation ells, using nonuniform and moving grids, constructing higher-order schemes. In recent
years, calculation accuracy was also improved by different methods, such as: extrapolation of numerical solutions
obtained on a succession of grids [23], employing information on the solution smoothness (algorithms without
saturation [24]), using exact solutions (in a grid cell with piecewise constant or piecewise linear initial data), as
in the Godunov scheme, used as the basis for construction of new classes of difference schemes [25], identification
of the main singularities of a solution, for example, a bow shock wave in supersonic flow problems, etc., The
uniform refinement of grid steps (or calculation cells) is not an efficient method for improving the accuracy in
solving multidimensional problems because of the power-law increase in the number of grid nodes in the calculation
domain and the respective increase in the number of arithmetic operations. Although this approach does not require
alterations in the algorithm and programs, it is used comparatively seldom. For problem solution, non-uniform grids
are most frequently used, including grids condensed in the regions of high gradients. If information on the behavior
of a solution is available, the coordinates are converted so as to condense cells in the regions containing singularities
of the solution (boundary layers, shock waves, etc.). This approach proves to be highly efficient, because it results
in a notable improvement in accuracy without a considerable increase in the number of calculation cells. However,
for most problems, regions of high gradients or other singularities are usually unknown a priori and can be obtained
only in the course of solution.
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An even more complicated situation arises for unsteady problems, whose solution varies in time and cal-
culation grids are time-dependent. In order to solve such problems, the initial equations must be supplemented
by unsteady equations to determine the laws of motion for the grid [25–28]. Complication of calculation domains
and transfer to the solution of multidimensional problems necessitated the development of special methods for con-
structing or generating grids satisfying particular requirements. At the present stage of modeling, the problem of
constructing efficient grids becomes crucial, and, according to expert evaluation, most of computational burdens fall
on the solution of this problem. Some approaches to solving such problems are presented in [25–29]. Let us indicate
one more method for improving calculation accuracy, namely, the construction of a solution on nested or adaptively
nested grids. Although this approach has not been sufficiently developed, it can serve as the basis of preliminary
solution, after which the solution process can be repeated until the desired accuracy of solution is attained. Some
methods for solving equations on non-structured grids are discussed in [29].

In recent decades, in addition to nonuiform grids, higher-order schemes have been widely used, mostly of two
types: schemes using an extended pattern (see [20, 22]) and so-called high-order compact schemes using a three-point
pattern [30, 31]. In the first case, in constructing continuous computation schemes for problems with discontinuous
data, oscillations of numerical solutions are reduced using various methods of monotonization; to the initial equations
of the difference scheme dissipative terms are added, which reduce oscillations and smooth the solution. In TVD-type
schemes based on the principle of minimum derivatives, solution monotonicity is attained by introducing nonlinear
numerical dissipation, which provides for feedback between the numerical scheme and the solution [32–34]. As a
rule, such schemes fit the entropy inequality and have second or higher orders of approximation. The solution
is smoothed on a limited number of grid cells. There are numerous modifications of the scheme (ENO-schemes,
correlation schemes, schemes with limited antidiffusion, etc. [34]), which retain monotonicity, higher order on
discontinuities, conservatism, etc. It must be noted that the use of expanded patterns in these schemes necessitates
the specification of fictitious layers and additional boundary conditions absent in the initial formulation of problems
or changing the approximation in near-boundary nodes, which disturbs the scheme uniformity.

In the case of compact schemes, higher-order approximation is attained on a three-point pattern through a
special choice of an equation approximation that eliminates lower-order errors (see [20, 22, 30, 31]). A disadvantage
of these schemes is that the approximation is considerably complicated, especially for multidimensional cases. At
the same time, the use of higher-order schemes is the only method for solving multidimensional problems with
reasonably high accuracy.

A modification of the FDM is the FDV, which is based on the approximation of initial equations in integral
form (see, e.g., [16–20]). The possibility of choosing various forms of calculation cells in approximating calculation
domains has made the FDV rather popular in solving problems with complex geometry, including multiply connected
domains. Initial equations are approximated for every initial cell, i.e., the obtained schemes are conservative. The
order of approximation depends on the approximation accuracy for volume and surface integrals, which facilitates
the construction of higher-order schemes.

The economic efficiency of an algorithm has always been one of the most significant requirements and it
is understood as the minimization of the number of arithmetic operations required to solve the problem. We
estimate computer resources required to solve multidimensional unsteady problems (see [11]). Let M be the space
dimensionality of a problem, m the number of equations (unknown functions), Ij the number of grid nodes in the
direction xj , q the average number of arithmetic operations per grid node, and N the number of time steps. Then,
the total number of operations required to solve the problem is

Q = mqNI, (2.3)

where I = I1×I2×. . .×IM . This formula does not allow for some factors that influence the consumption of computer
resources, such as the number of internal iterations, specified computation accuracy, initial approximation, etc. We
assume that they were allowed for a priori in the coefficient q. As an example, let us choose average values
of parameters in solving problems by existing methods: Ij = I = 102–103, m = 10–102, N = 103–104, and
q = 102–104. For M = 3 (three-dimensional case), Q = 1012–1019 FLOP. Let R denote the number of computer
operations per second. Then,

T = Q/R (2.4)

is the time of problem solution. Correspondingly, the RAM consumption can be calculated from the formula

L = mlI,
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where l is the number of time layers required for storage in RAM (normally, l = 2). Expert appraisal shows that a
design using the results of mathematical modeling is optimal when the calculation of a single version does not exceed
15 min (about 103 sec). In order to satisfy this condition, the computer speed and RAM size for the solution of a
three-dimensional problem must be R = Q/T = 109–1016 FLOP, L = 2 ·107–2 ·1011 bytes. We note that in the U.S.
national aerospace modeling project (see [6]), worked out in the 1980s and intended for the solution of aerodynamic
problems, the computer characteristics were as follows: R = 109–1010 FLOP and L ≈ 2.5 · 108 bytes, i.e., it was
planned to design a computational system for the solution of 3D aerodynamic problems in the approximation of
gas-dynamic equations and simplified Navier–Stokes equations (models of second and third levels).

The above definition of the speed R did not specify whether a uniprocessor or multiprocessor computational
system was employed. The speed R was assumed not to be dependent on the type of algorithms, problem dimen-
sionality, memory consumption, and other factors. Actually, the processing speed depends on many factors. For
approximate allowance of the latter, the processing speed can be written as

R′ = sR,

where R is the peak performance of the system, s is the average loading factor for processors (s < 1), whose
value can vary significantly for different multiprocessor systems. According to (2.4), the cost of problem solution
can be reduced by decreasing Q or improving the processing speed R. The number of arithmetic operations Q
determines the economic efficiency of an algorithm. A numerical algorithm can be called economic if Q in (2.3) is
a linear function of the number of grid nodes in time and space. As is known, the difference schemes are divided
into explicit and implicit classes. As a rule, explicit schemes are conditionally stable, i.e., a difference problem is
correct under a certain relationship between the time (iterational), τ , and space, hj , steps of the grid. For implicit
schemes, there are no such constraints or those are weaker than for the explicit schemes. In accordance with the
above-mentioned definition, explicit schemes are not economic. Let us consider a very simple example. Let (2.2) be
an explicit difference scheme, which approximates an unsteady heat-conduction equation in region Ω = {0 6 t 6 1,
0 6 x 6 1}. We introduce difference grid steps τ = 1/N and h = 1/I, where N and I are the numbers of grid nodes
in the t and x directions. The explicit scheme is stable when the condition τ 6 h2/2 = KI−2 is satisfied. Then, the
number of arithmetic operations required to solve the problem is Q = qNI ≈ KqI3. When the grid step is changed
h, i.e., when the number of nodes (I) increases, the number of operations increases by a factor of p3. A similar
situation arises when explicit schemes are used to solve hyperbolic equations for which the number of operations
increases according to the square law under a linear increase in the number of grid steps.

We now consider the questions of algorithm universality. For explicit schemes, extension of algorithms
to the multidimensional case does not involve serious difficulties but economic efficiency becomes a major problem
because an increase in problem dimensionality leads to more rigid constraints on stability. Even for linear systems for
multidimensional problems, the implementation of implicit schemes becomes much more complicated. For instance,
for α > 0.5, a difference scheme with weights for numerical solution of the linear heat-conduction equation (see [20])
is unconditionally stable and approximates the heat-conduction equation with order O(τ2 + h2) at α = 0.5. In the
one-dimensional case, it is implemented by scalar triple-point marching and requires eight arithmetic operations
per grid node. For the two-dimensional case, its solution can be obtained by matrix sweep, which requires inversion
of I × I matrices at each grid node. Obviously, for a great number of nodes, this scheme becomes economically
inefficient. Such a situation is also characteristic of hyperbolic equations. Therefore, extension of efficient implicit
schemes for solving one-dimensional problems to the multidimensional case usually complicates their realization or
leads to lower economic efficiency. The conversion from the solution of one-dimensional equation to the solution
of multidimensional problems required the development of new numerical algorithms that can be effectively used
to solve problems of any dimensionality. Such algorithms were developed in the 1970s–1980s on the basis of
factorization and splitting methods (see, e.g., [1, 3, 14–22]). They reduce the initial multidimensional problem
to a succession of its one-dimensional analogues or simpler problems. In factorization method, basic schemes are
represented as an approximate product of one-dimensional or simpler difference analogues, and in the splitting
method, the initial problem is represented as a set (weak approximation) of simpler one-dimensional problems,
which are then approximated by explicit and implicit difference schemes (see [3, 15, 18]). It must be noted that
the introduction of splitting or factorization into difference schemes leads to the appearance of additional terms of
order O(τ2), absent in the initial equations, which can deteriorate the solution accuracy or increase the number of
iterations required to obtain a steady-state solution by the relaxation method.
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The last but not less important requirement to numerical algorithms is their adaptation to different archi-
tectures of computer systems. The basic numerical algorithms used to solve of problems of different classes were
developed at the time of uniprocessor computers and imply successive arithmetic operations. The emergence of
various multiprocessor computing systems has made it necessary to revise the developed numerical algorithms and
to assess their efficiency and adaptability to new architectures. This problem is especially difficult because there
are various approaches to designing computer architectures. Therefore, at present, the adaptability of most existing
methods to various types of computing systems has not been sufficiently studied. It is much easier to parallel ex-
plicit schemes. For example, in explicit computation in a new step, an original problem can be divided into separate
segments or modules, each of which can be solved independently (with accuracy up to calculations on segments
boundary and data transfer from one segment to the others). Therefore, the emergence of new computing facilities
resulted in the appearance of a new trend in computational mathematics — the development of parallel algorithms
for solving multidimensional problems.

Let us formulate the main problems that arise in the design of numerical algorithms:
— development of mathematical apparatus and its application to the justification of numerical algorithms;
— generation of calculation grids with specified characteristics (e.g., those adapting to solution) for the

solution of multidimensional problems in complex, multiply connected geometries;
— adaptation of existing and development of new, economically efficient, numerical algorithms using various

physicomathematical models and computers with various architectures.
It should be noted that significant advances have been attained in the development of the other elements of

the technological chain “programming–computer.” The state of the art of programming languages and the prospects
of their development are discussed in [35]. The speed of computers and computing systems increases exponentially
both due to the refinement of the element base and the design of fundamentally new architectures of computing
structures and modeling systems. In addition to the emergence of supercomputers with a peak power up to 1012–
1015 FLOP, computational facilities of the cluster type are being developed, which network computers of different
level: PC, workstations, etc. One should expect the emergence of new computer facilities, their increasing influence
on the development of numerical algorithms and models, and the design of expert systems and modeling systems
for various spheres of human activity.
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